Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Burcu Arslan, ${ }^{\text {a* }}$ Canan Kazak, ${ }^{\text {a }}$ Nesuhi Akdemir, ${ }^{\text {b }}$ Cihan Kantar ${ }^{\text {b }}$ and Erbil Ağar ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and
${ }^{\mathbf{b}}$ Department of Chemistry, Ondokuz MayIs University, TR-55139 Samsun, Turkey

Correspondence e-mail: nbarslan@ttnet.net.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.072$
$w R$ factor $=0.161$
Data-to-parameter ratio $=17.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1,2,4,5-Tetrakis(2-tert-butyl-4-methylphenoxymethyl)benzene

The centrosymmetric title compound, $\mathrm{C}_{54} \mathrm{H}_{70} \mathrm{O}_{4}$, contains a benzene ring at the centre and four 2-tert-butyl-4-methylphenoxymethyl substituents. In the structure of the molecule, some of the benzene rings are coplanar. The title compound displays intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The crystal structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

1,2,4,5-Tetrakis(2-tert-butyl-4-methylphenoxymethyl)benzene, (I), and similar compounds are generally used for the synthesis of polystyrene polymers. These polymers have become of interest in recent years because of their unique properties and important applications (Kuriyama \& Otsu, 1984; Kwon et al., 2003).

(I)

The structure of the centrosymmetric molecule consists of a benzene ring (ring $A, \mathrm{C} 13-\mathrm{C} 27$) at the centre with four 2-tert-butyl-4-methylphenoxymethyl substituents at $\mathrm{C} 13, \mathrm{C} 13^{\mathrm{i}}, \mathrm{C} 14$ and $\mathrm{C} 14^{\text {i }}$ [Fig. 1; symmetry code: (i) $-x, 1-y, 1-z$.] Rings A and B (C1-C6) are coplanar. Atom C 26 attached to ring C (C16-C21) has a larger displacement parameter than usual. The torsion angles $\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 12-\mathrm{C} 13$ (between rings A and B) and $\mathrm{C} 14-\mathrm{C} 15-\mathrm{O} 2-\mathrm{C} 16$ (between rings A and C) are 179.0 (2) and $93.2(3)^{\circ}$, respectively. The $\mathrm{C}-\mathrm{O}$ bond lengths are in the range 1.378 (3)-1.434 (3) (Table 1). The crystal structure of the title compound is stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions and there are also weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2).

Experimental

A solution of 2-tert-butyl-4-methylphenol ($1.48 \mathrm{~g}, 9.01 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.5 \mathrm{~g}, 18.12 \mathrm{mmol})$ in dry dimethylformamide (DMF, 50 ml) was heated and stirred at 313 K under N_{2} for 1 h . To this mixture, a solution of 1,2,4,5-tetrakis(bromomethyl)benzene ($1.00 \mathrm{~g}, 2.22 \mathrm{mmol}$) in dry DMF (20 ml) was added dropwise under N_{2} over a period of 23 h . The reaction mixture was stirred for 2 d at 313 K and poured into iced water $(150 \mathrm{~g})$. The product was filtered off and washed with $(10 \% w / w) \mathrm{NaOH}$ solution and water until the filtrate was neutral. Recrystallization from an ethanol solution gave a white product (yield $0.06 \mathrm{~g}, 3.45 \%$). Single crystals were obtained from absolute ethanol at room temperature via slow evaporation (m.p. 406 K);

Received 26 October 2004 Accepted 15 November 2004 Online 20 November 2004
elemental analysis calculated for $\mathrm{C}_{54} \mathrm{H}_{70} \mathrm{O}_{4}$: C 82.82, $\mathrm{H} 9.01 \%$; found: C 82.92, H 9.10\%.

Crystal data

$\mathrm{C}_{54} \mathrm{H}_{70} \mathrm{O}_{4}$
$M_{r}=783.10$
Monoclinic, $P 2_{1} / n$
$a=10.1833(9) \AA$
$b=21.5350(16) \AA$
$c=11.5029(11) \AA$
$\beta=107.725(7))^{\circ}$
$V=2402.8(4) \AA^{3}$
$Z=2$

$$
D_{x}=1.082 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$M_{r}=783.10$
Monoclinic, $P 2_{1} / n$
$a=10.1833$ (9) A
$c=11.5029(11) \mathrm{A}$
$\beta=107.725$ (7) ${ }^{\circ}$
$Z=2$
Mo $K \alpha$ radiation
Cell parameters from 23574
reflections
$\theta=1.9-28.8^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.40 \times 0.22 \times 0.04 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: by
integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.983, T_{\text {max }}=0.997$
24464 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0548 P)^{2}\right. \\
& +0.7513 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.009 \\
& \Delta \rho_{\text {max }}=0.17 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.378(3)$	$\mathrm{O} 2-\mathrm{C} 16$	$1.383(4)$
$\mathrm{O} 1-\mathrm{C} 12$	$1.425(3)$	$\mathrm{O} 2-\mathrm{C} 15$	$1.433(3)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 12-\mathrm{C} 13$	$179.0(2)$	$\mathrm{C} 16-\mathrm{O} 2-\mathrm{C} 15-\mathrm{C} 14$	$93.2(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{O} 1$	0.96	2.38	$3.012(4)$	123
C10-H10C \cdots O1	0.96	2.31	$2.956(4)$	124
C12-H12A \cdots O2	0.97	2.39	$2.920(3)$	114
C24-H24A \cdots O2	0.96	2.32	$2.953(5)$	123
C25-H25C O2	0.96	2.39	$3.012(5)$	123
C27-H27 \cdots O1	0.93	2.36	$2.726(4)$	103
C12-H12B \cdots Cg1 $^{\mathrm{ii}}$	0.97	2.75	$3.572(3)$	143

Symmetry code: (ii) $1-x, 1-y, 1-z . C g 1$ is the centroid of ring C (C16-C21).

Figure 1
An ORTEP-3 (Farrugia, 1997) view of the title compound, showing the atom-numbering scheme, 50% probability displacement ellipsoids and intramolecular hydrogen bonds. [Symmetry code: (i) $-x, 1-y, 1-z$.]

All H atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic H), 0.97 (methylene H) or $0.96 \AA$ (methyl H). $U_{\text {iso }}($ aromatic and methylene H$)$ values were set at $1.2 U_{\text {eq }}(\mathrm{C})$, while $U_{\text {iso }}\left(\right.$ methyl H) values were set at $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Kuriyama, A. \& Otsu, T. (1984). Polym. J. 16, 511-514.
Kwon, T. S., Takagi, K., Kunisada, H. \& Yuki, Y. (2003). Eur. Polym. J. 39, 1437-1441.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA and X-RED32. Stoe \& Cie, Darmstadt, Germany.

